

PROBABILISTIC SIMULATION OF FIRE ENDURANCE OF STEEL CONSTRUCTION

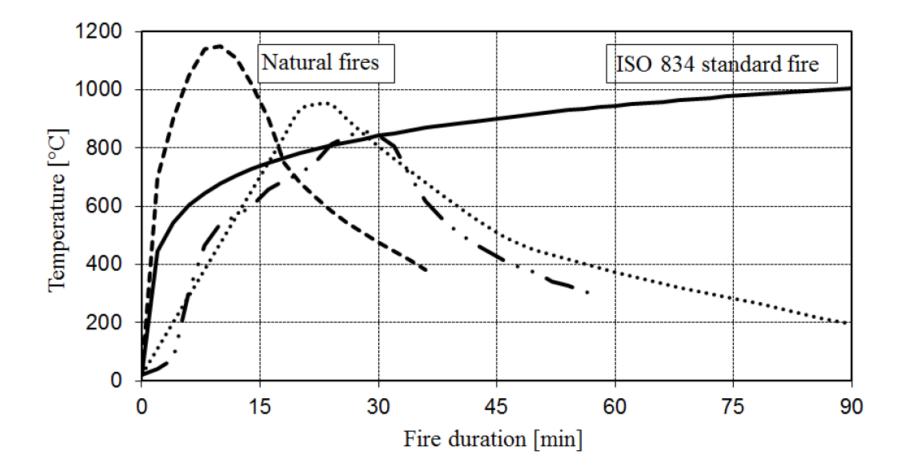
PhD Students' Seminar on Fire Safety Science

Andrzej Krauze

The Main School of Fire Service

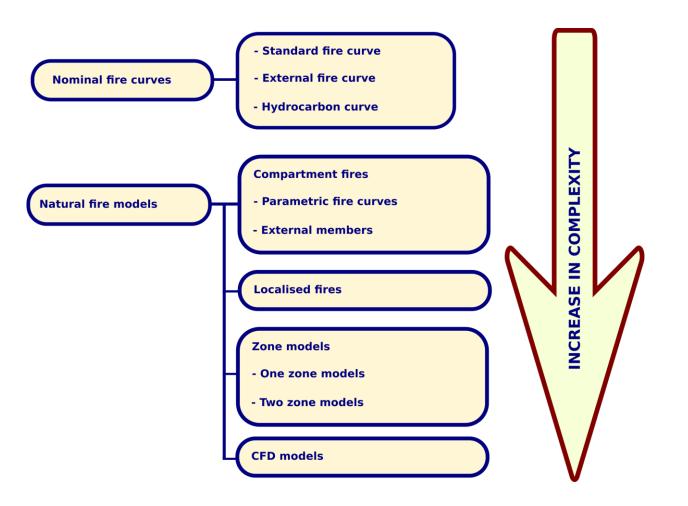
Warsaw, Poland

Prescriptive-Based Building Design



Regulation of the Polish Minister of Infrastructure of April, 2002,

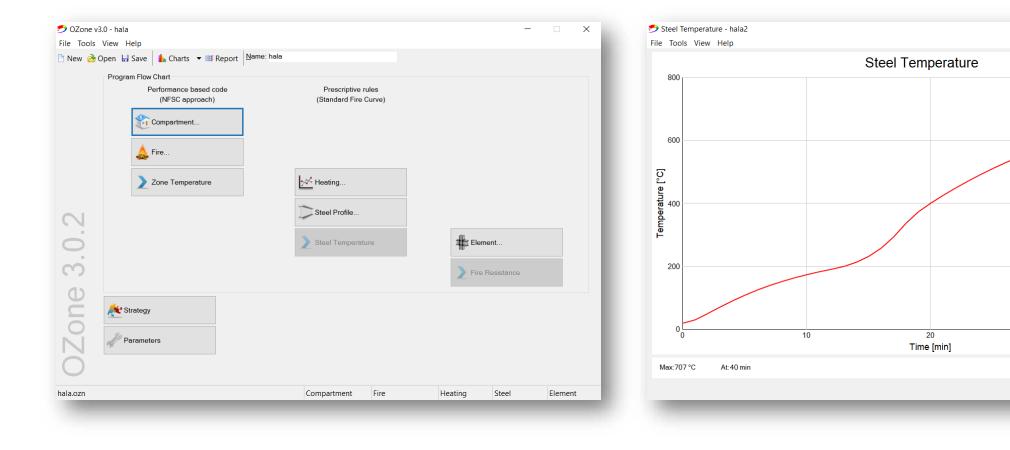
on the technical conditions which should be met by buildings and their location.


Natural fire model for the structural fire design

Source: Lyzwa, J., Zehfuss, J.: Thermal material properties of concrete in the cooling phase. ASFE conference 2017

Natural fire model for the structural fire design

Verification of load-bearing capacity at specific temperatures


$$\theta_{a,cr} = 39.19 ln \left[\frac{1}{0.9674 \cdot \mu^{3.833}} - 1\right] + 482$$

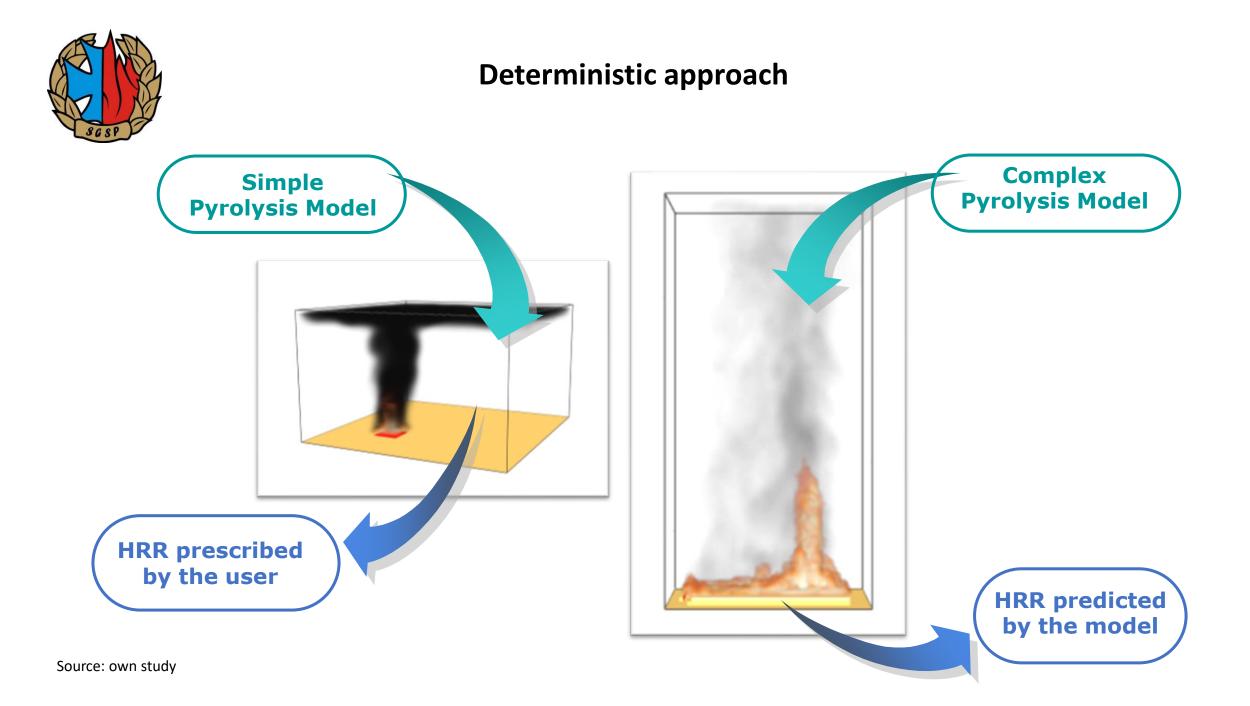
$$\theta_{a,cr} = 39.19 ln \left[\frac{1}{0.9674 \cdot 0.7^{3.833}} - 1 \right] + 482 = 526^{\circ} C$$

Source: Eurokod 3 - Design of steel structures – Part 1-2 - General rules – Structural fire design

The computer code Ozone V3

Source: Chart window (Ozone).

– 🗆 X

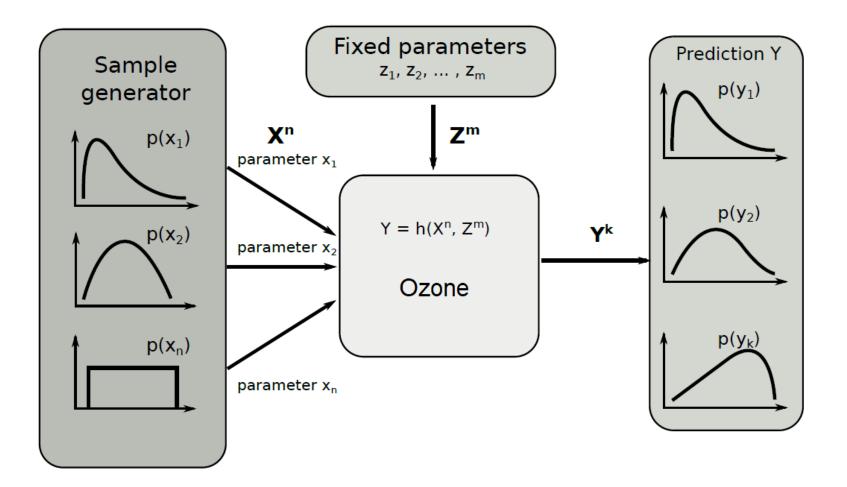

40

Close

30

Print

Source: Main window (Ozone)

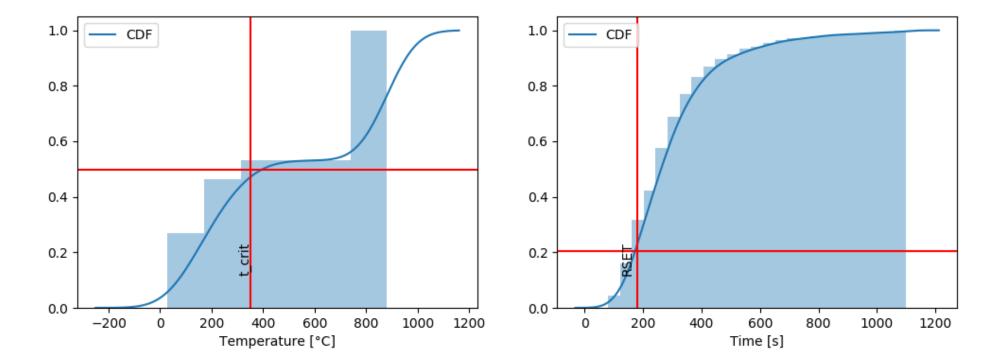


Risk assessment

$\mathbb{R} = \mathbb{P} \times \mathbb{S}$

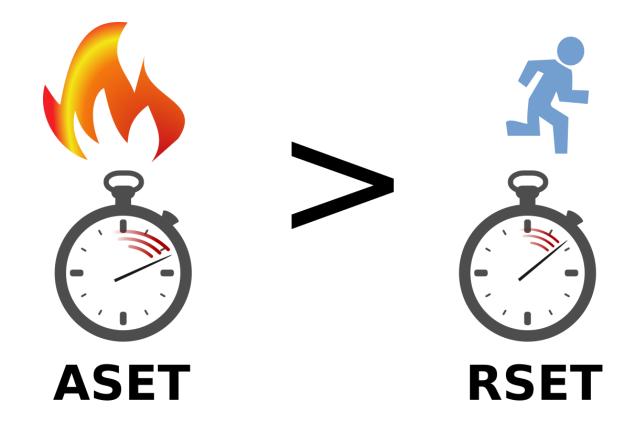
The computer code McOZone

Source: own study



McOZone configuration files

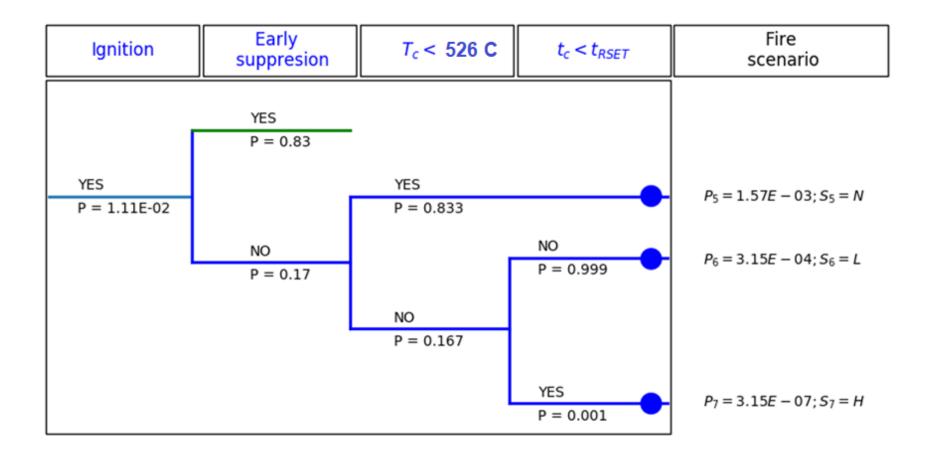
- Room dimensions (.geom)
- Properties of building materials (.mat)
- Opening in walls and ceilings (.cel, .op)
- Parameters of mechanical ventilation (.ext)
- Input data for fires (.ful)
- Analysis strategy (.str)
- Other simulation settings (.par)



Results

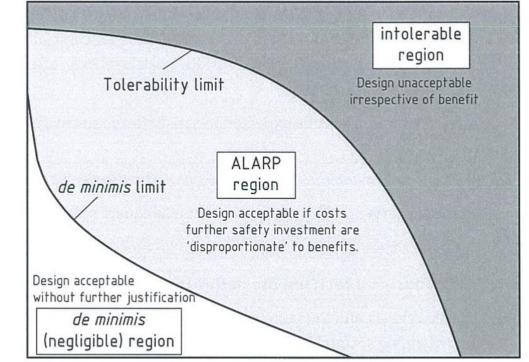
Performance-based building design

Source: own study


Results

ID,t_max,time_crit,vent_num,vent_area,ceil_num,ceil_area,ext_num,ext_flow,fire_type,hrrpua,alpha,hrr_max,fire_r,abs_x,abs_y,abs_z,rel_x,rel_y,rel_z,distance3D,LCF_h,element,profi 1595038162,145.7,0,1,184.0,0,-1,3,41.67,alfat2 store,465.41642011441877,0.022888052762093408,32.9588,10.05,43.6,23.7,0.9,1.60000000000014,0,3.5000000000004,3.848376280978772 1595038163,498.9,1045,1,184.0,0,-1,3,41.67,alfat2 store,505.21506475014456,0.075313595974957,108.4516,10.05,12.1,20.6,2.1,2.09999999999996,0,2.300000000000003,3.11448230047940 1595038164,158.6,0,1,184.0,0,-1,3,41.67,alfat2 store,318.1594132964181,0.02480953750112711,35.7257,10.05,36.5,12.5,1.2,0.5,0,3.2,3.23882694814033,3.39999999999999999999,h,IPE AA 80, 1595038165col,124.8,0,1,184.0,0,-1,3,41.67,alfat2 store,220.0754625311616,0.01934061970736827,27.8505,10.05,23.9,25.5,0.3,2.8999999999999999999986,0.5,1.2,3.0773365106858224,4.3,v,H 25 1595038166col, 404.9, 1145, 1, 184.0, 0, -1, 3, 41.67, alfat2 store, 377.66036248335666, 0.06896826642227644, 99.3143, 10.05, 63.0, 2.0, 0.8, -1.200000000000028, 2.0, 1.2, 2.3664319132398477, 3.8, v 1595038168,164.9,0,1,184.0,0,-1,3,41.67,alfat2 store,296.10373317611516,0.024474863574210467,35.2438,10.05,36.2,12.2,1.8,0.200000000000284,0,2.6000000000005,2.60768096208100 1595038169, 311.0, 0, 1, 184.0, 0, -1, 3, 41.67, alfat2_store, 316.82417690918373, 0.05042535548963556, 72.6125, 10.05, 7.5, 13.7, 1.8, 0, -2.30000000000007, 2.60000000000005, 3.471310991541957 1595038171,100.1,0,1,184.0,0,-1,3,41.67,alfat2 store,214.93372536695122,0.01458104935352737,20.9967,10.05,3.2,7.2,0.0,0,1.799999999999998,4.4,4.753945729601885,4.6,h,IPE AA 80, 1595038171a, 127.9, 0, 1, 184.0, 0, -1, 3, 41.67, alfat2_store, 169.36695682397274, 0.01794723869082147, 25.844, 10.05, 67.2, 1.8, 1.5, -0.200000000000284, 0, 2.9000000000004, 2.90688837074972 1595038172,295.9,0,1,184.0,0,-1,3,41.67,alfat2 store,313.08660725405866,0.04643087356007994,66.8605,10.05,61.0,29.3,0.4,-1.5,0,4.0,4.272001872658765,4.1999999999999999,h, IFN 80, 1595038174,51.2,0,1,184.0,0,-1,3,41.67,alfat2_store,381.1856925201126,0.003491939074124255,5.0284,10.05,48.6,11.4,1.9,1.600000000000014,0,2.500000000004,2.968164415931167,2 1595038175col,584.1,995,1,184.0,0,-1,3,41.67,alfat2 store,355.54603208950186,0.09268414897478437,112.79697868039447,10.05,32.8,12.8,1.7,0.7999999999999972,1.800000000000007,1.2 1595038176,67.9,0,1,184.0,0,-1,3,41.67,alfat2 store,361.6865646993802,0.007322151440614122,10.5439,10.05,25.6,12.9,0.3,-1.3999999999999999999996,0,4.1000000000000005,4.332435804486894 1595038178,113.5,0,1,184.0,0,-1,3,41.67,alfat2_store,423.10847535425313,0.014307960588881397,20.6035,10.05,2.8,14.3,2.0,-2.1000000000000000,0,2.400000000004,3.189043743820395 1595038179col, 461.7, 1095, 1, 184.0, 0, -1, 3, 41.67, alfat2 store, 399.51444296474756, 0.07392967315414611, 106.4587, 10.05, 9.2, 21.2, 0.9, -0.8000000000000007, 1.399999999999986, 1.2, 1.6401219 1595038181,101.4,0,1,184.0,0,-1,3,41.67,alfat2_store,400.4221699409259,0.012999166726924251,18.7188,10.05,14.3,21.7,1.3,-0.599999999999999999999,0,3.100000000000000005,3.15753068076938 1595038182,66.9,0,1,184.0,0,-1,3,41.67,alfat2_store,161.98012605643575,0.006358113754479236,9.1557,10.05,20.9,22.0,1.4,-0.1000000000000142,0,3.000000000004,3.00166620396072 1595038183,48.8,0,1,184.0,0,-1,3,41.67,alfat2 store,421.6420033506797,0.0034434637358027507,4.9586,10.05,18.1,22.8,1.0,-2.8999999999999999999996,0,3.400000000000004,4.468780594300865 1595038184,91.2,0,1,184.0,0,-1,3,41.67,alfat2_store,226.55667209049813,0.01031943233868492,14.86,10.05,19.4,27.2,1.9,-1.600000000000014,0,2.500000000004,2.968164415931167,2 1595038185,175.6,0,1,184.0,0,-1,3,41.67,alfat2 store,475.06812862657563,0.027679123708066133,39.8579,10.05,53.4,12.9,1.4,2.3999999999999999999986,0,3.000000000000004,3.841874542459709 1595038186col, 176.6, 0, 1, 184.0, 0, -1, 3, 41.67, alfat2 store, 462.178615959503, 0.030027606626116254, 43.2398, 10.05, 30.4, 14.3, 0.6, -1.60000000000014, -1.699999999999999993, 1.2, 2.4103941580

The event tree for the traumatic injury base risk calculation



Categorisation of risks

Frequency ►	Beyond extremely unlikely	Extremely unlikely	Unlikely	Anticipated
Consequence	f≤10 ⁻⁶ yr ⁻¹	$10^{-4} \ge f >$ 10^{-5} yr $^{-1}$	$10^{-2} \ge f >$ $10^{-4} yr^{-1}$	$f > 10^{-2} \text{yr}^{-1}$
High		7	4	1
Moderate	10	8	5	2
Low		9	6	3
Negligible	11	12		
Key High Risk Moderate Risk Low Risk Negligible risk				

Frequency of occurrence (log-scale)

Consequence severity (log-scale)

Source: SFPE Handbook of Fire Protection Engineering, 2016.

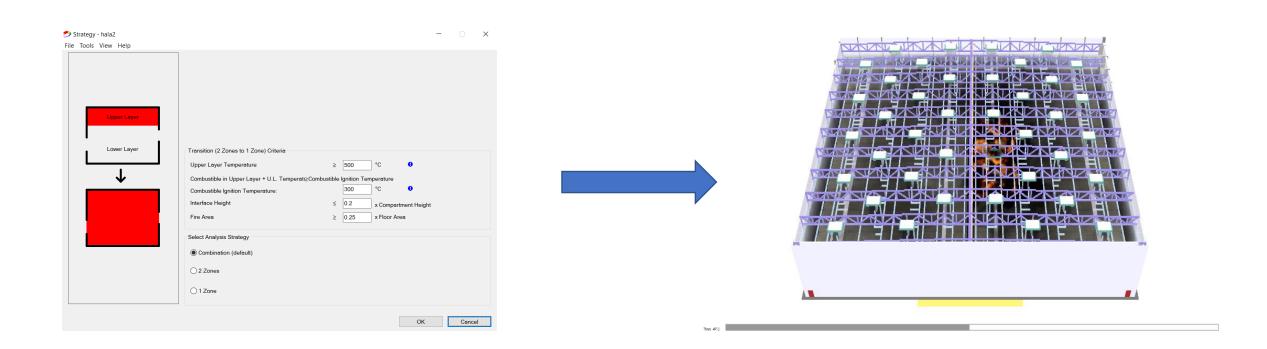
McOZone limitations

- Enables to use localised fires.
- Enables to use compartment fires (One-zone or Two-zone fire models).
- Analyzes the theoretically isolated cross-section.
- Does not analyze the mechanical response of the structure.

Version 3.0.4

Reduction of the Burning Rate

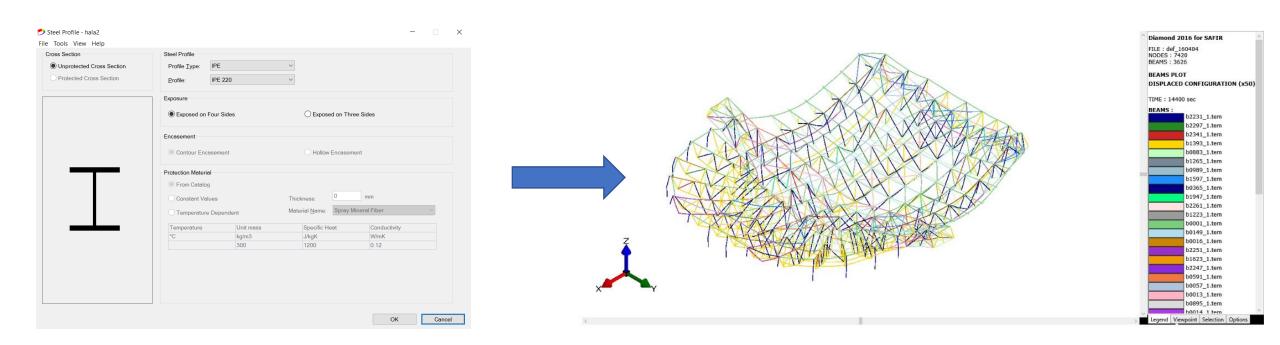
$$Q = Q_0 e^{-k(t-t_0)}$$


$$Q_0$$
 – HRR at sprinkler actuation t_0 [kW]

k – fuel dependent constant

Source: H.Z. Yu, J.L. Lee, and H.C. Kung. Suppression of Rack-Storage Fires by Water. In Fire Safety Science – Proceedings of the Fourth International Symposium, pages 901–912. International Association For Fire Safety Science, 1994

Computational fluid dynamics, CFD



Source: strategy for compartment fires (Ozone)

Source: own study

Finite element method, FEM

McSteel

Source: own study

"These days, there's not much you can understand about what is going on around you if you do not understand the uncertainty attached to pretty much every phenomenon."

- J.N. Tsitsiklis

THANK YOU !

Andrzej Krauze

mail: akrauze@sgsp.edu.pl

tel.: 510 288 172

Andrzej Krauze

mail: akrauze@sgsp.edu.pl

tel.: 510 288 172